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This essay extends the recent work of Levine, Park, and McCornack (1999) on the veracity effect in
deception detection. The probabilistic nature of a receiver’s accuracy in detecting deception is explained,
and a receiver’s detection of deception is analyzed in terms of set theory and conditional probability.
Detection accuracy is defined as intersections of sets, and formulas are presented for truth accuracy, lg"e
accuracy, and total accuracy in deception detection experiments. In each case, accuracy is shown to be a
Sunction of the relevant conditional probability and the truth-lie base rate. These formulas are applied to
the Levine et al. results, and the implications for deception research are discussed. Key words:
Accuracy, Deception

Researchers have long been interested in deception detection. Literature reviews
conclude that an individual’s accuracy in detecting a lie is slightly above a
chance (e.g., Anderson, Ansfield & DePaulo, 1997; Kalbfleisch, 1994; Miller & Stiff,
1993). Consistent with this conclusion, meta-analysis shows that people tend to be
about 57% accurate (Kraut, 1980) when accuracy is calculated by averaging across
truths and lies and when an equal number and lies are judged (Levine, Park, &
McCornack, 1999).

Researchers have also sought to find factors that affect detection accuracy. For
example, training (deTurk & Miller, 1990; Fieldler & Walka, 1993), familiarity
(Feeley, deTurck, & Young, 1995), and receiver suspicion (McCornack & Levine,
1990) affect peoples’ ability to distinguish truths from lies. Although these and other
factors significantly impact detection accuracy, accuracy rates seldom drop below
40% or exceed 70% in detection experiments (Kalbfleisch, 1994; Miller & Stiff,
1993).

Levine et al. (1999) question the conclusions drawn from previous detection
accuracy studies. Levine et al. show that because people are most often truth-biased,
only truth accuracy is above chance, and that lie accuracy is typically below chance
levels." Truth and lie accuracy are not correlated, and the effects of external
variables (e.g., familiarity, suspicion, probing) are often not general across truth and
lie accuracy. An individual’s accuracy in detecting lies is also contingent the ratio of
lies to the total number of statements judged (i.e., the truth-lie base rate). These
findings challenge several previously and widely held beliefs about deception
detection including the belief that humans can detect deception at slightly above
chance levels. In short, Levine et al. argue that the results of previous research are
artifacts of reporting average accuracy based on a common and artificially set
truth-lie base rate. They contend that truth and lie accuracy need to be estimated
separately, and that researchers should consider base rates before drawing conclu-
sions about accuracy rates.
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This essay extends Levine et al.’s work on the veracity effect by examining
detection accuracy as an issue of probability. Based on set theory and the concept of
conditional probability, we explain Levine et al.’s findings with probability formulas.
Our formulas show why truth accuracy and lie accuracy diverge. This analysis also
explains why the truth-lie base rate is a crucial factor in accuracy rates.

In order to model detection accuracy, we describe the type of experiment we are
modeling, and articulate the assumptions of our model. Next, set theory and
conditional probability are explained, and shown to apply to detection accuracy
experiments. Formulas for lie detection, truth detection, and total accuracy are
presented and explicated. Examples are provided, and the implications for decep-
tion research are discussed. Our effort to model detection accuracy begins with a
brief presentation of relevant definitions.

The Model
Definitions

Although deception is defined in a variety of ways, deception may be defined
most simply as when a person knowingly misleads another person (Levine, 1994). A
lie is one type of deceptive message, and for the purpose of this paper, a lie is defined
as a message that is known by the message source to be false, but is presented as if it
were true.

The detection of a lie involves at least two parties. A source produces a message
that has some probability of being a lie. A message receiver judges the veracity of the
message presented. A message receiver may be said to be accurate when a truthful
message is judged as truthful, or when a lie is judged as a lie. The former situation is
labeled truth accuracy and the latter situation refers to lie accuracy. Truthful
messages judged as lies, or lies judged as truths are considered inaccurate judgments.
Total, or average accuracy refers to ratio the judgments that are accurate, regardless
of veracity, to the total number of judgments made. Thus, we define accuracy as hit
rate (Wagner, 1993).

The Typical Deception Detection Experiment

Although there is a large literature on deception detection accuracy, the vast
majority of experiments use variations on the same basic experimental design
(Miller & Stiff, 1993). In the typical experiment, one group of participants is
recruited to serve as message sources. Sources are either instructed or induced to
either lie or tell the truth, or both. A different group of participants are recruited to
judge the honesty of the sources’ messages. Judges are typically exposed to a number
of messages where half of the messages are true, and the other half are lies. Each
message is judged as either honest or a lie. Accuracy is then calculated as the
proportion of correct truth-lie judgments to total judgments. As mentioned above,
the average accuracy rate in these experiments is 57% when the truth-lie base rate is
50.

Assumptions

All mathematical models require assumptions, and our model makes three key
assumptions. First, we assume that the messages being judged fall into one of two
mutually exclusive and exhaustive categories. The messages presented by sources
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are either truths or lies. Further, in a given experiment, there is a known proportion,
set in advance by the researcher, of messages that are lies. Second, our model
assumes that veracity judgments are also dichotomous. Receivers are assumed to
judge messages as either truths or lies. Third, we assume that it is possible to know
the probability of the receiver judgment given the veracity of a source’s message, but
the probability that source’s message is a truth (or lie) given a receiver’s judgment is
unknowable and irrelevant.

While these assumptions may not reflect reality in all contexts, they accurately
reflect the type of deception detection experiment we are modeling. In such
experiments, both messages and the judgments made regarding those messages are
dichotomous. Also, in detection experiments, the veracity of source messages
precedes receiver evaluations and is under the control of the researcher.

Sets, Sample Space and Basic Probability Theory

The most basic concepts in modern probability theory include sample space,
elementary events, and events (i.e., sets, classes or event classes). The sample space
refers to the set of all possible outcomes of some well defined act or process. An
elementary event refers to individual outcomes, while events are sets or classes of
elementary events (Freund, 1973; Hays, 1994). Upper case letters are conventionally
used to symbolize events, and the probability of some event in the sample space is
marked with P. Thus, the probability of event A is written as P(A).

In deception detection experiments, receivers are exposed to a series of messages,
some of which are true and some of which are lies. In such situations, truths and lies
may be thought of as sets or events, each comprised of individual messages (the
elementary events), and each being a subset in the sample space (the set of all
possible messages). If we use T to denote truthful messages, the probability that a
given message is true is P(T). P(T) represents the base rate in deception experiments.
As noted above, P(T) is almost always set at .5 in deception research.

We can also think of receiver judgments as sets. Receivers make a series of
judgments, sometimes judging a message as true, and other times labeling it a lie.
Here, truth and lie judgments may be thought of as sets or events, each comprised of
individual judgments of a specific message (the elementary events), and each being a
subset in the sample space. If H represents all messages that are judged as honest, the
probability that a receiver will judge a message as honest is P(H). The reader should
note that P(H) is often referred to as truth-bias in the literature, because P(H) is
almost always found to be greater than .5.

Truth and Lie Detection as_Joint Events

If there are two events, A and B, these events may jointly occur. There are two
types of joint events. The first type of joint event is when an outcome is a member of
both event A and event B. The joint event A and B uses the symbol N, which means
intersection. Thus, the joint event A N B is read as the intersection of sets A and B,
and refers to an outcome that is a member of both individual events. For example, if
A refers to all people who are adults, and B refers to all people with brown eyes, A N
B refers to all adults with brown eyes.

The second type of joint event is a union, which is symbolized as U. AU B stands
for A or B. For example, if A refers to all people who are adults, and B refers to all
people with brown eyes, A U B refers to all people who are adults or have brown
eyes.
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The compliment of event A is an outcomes that is not A. Not A is symbolized ~A.
In the example above, all people who are not adults are ~A. Because truths and lies
are dichotomous in the experiments we are modeling, lies are the compliment of
truths, and lie judgments are the compliment of truth judgments.

The detection of a truthful message may be thought of as an intersection. If
messages that are truthful are event T, and messages that are judged as truthful are
event H, the event T M H is a truth that is correctly identified as truthful. That is,
truth accuracy occurs when a message is both truthful, and judged as truthful by a
receiver. The probability that a truthful messages will be judged as truthful can be
written P(T N H).

Lies are messages that are not truthful and might be symbolized as ~T. So, if ~T
denotes a lie, and ~H stands for messages that are judged as lies, then an accurately
detected lie is the intersection of ~T and ~H (i.e., ~T N ~H). Here, the probability
that a lie is judged correctly may be symbolized as P(~T N ~H). The intersections of
~T N H (lies judged as honest) and T N ~H (i.e., truths judged as lies) are erroneous
judgments. Thus, P(~T N H) and P(T N ~H) reflect the probabilities of incorrect
judgments.

Total accuracy may be thought of as a union of truth accuracy and lie accuracy.
When someone is accurate in detecting deception, we usually mean that they either
correctly identified a truth or a lie. If correctly identifying a truth is (T N H) and
correctly identified lies is (~T M ~H), then a correct veracity judgment is (T N H) U
(~T N ~H). Because the two types of accuracy are mutually exclusive, the
probability of a correct judgment is P(T N H) + P(~T N ~H).

Conditional Probability

Another way to think of the probability of detecting a truth or a lie is in terms of
conditional probability. For instance, we might ask, given that a source is lying, what
is the probability that the receiver will judge the message as a lie? The conditional
probability of event A given condition B is denoted P (A | B).

Mathematically, the conditional probability of event A given event B in sample
space S is P(A | B) = P(A N B) + P(B) where P(B) # 0. That is, the probability of
event A occurring given that event B has already occurred is the probability of both
A and B occurring divided by the probability of B.

If we solve for P(A N B) in the equation above, we find that P(A N B) = P(A | B) X
P(B). Here, the probability of the joint event A and B is equal to the conditional
probability of A given B multiplied by the probability of event B. Freund (1973)
refers to this derivation as the general rule of multiplication. Note also that if P(B) =
1.00, then P(A N B) = P(A | B).

Probability Formulas for Truth and Lie Detection

Above, we conceptualized accuracy as an intersection of two sets. Let T be truthful
messages and ~T represent lies. Further, let H be honesty judgments and ~H be lie
judgments. Then an accurate truth judgment is T N H and the probability of a
correct truth judgment is P(T N H). Symbolically, ~T N ~H is a correctly identified
lie, and P(~T N ~H) is the probability that a lie will be correctly identified. Recall
also that we assumed that judgments depend on source veracity but not vice versa.
That is, H is conditional on T, but T given H is unknown.

Applying the general rule of multiplication, the probability that a truth will be
correctly judged is
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P(TNH)=PH|T) x P(T) Formula 1
The probability that a lie is identified correctly is
P(~T N ~H) = P(~H | ~T) X P(~T) = P(~H | ~T) X 1 — F¢Fmula 2
And total accuracy is
P(T N H) + P(~T N ~H) Formula 3

Two Factors Determining Detection Accuracy

As can be seen from the formula above, detection accuracy depends on two
distinct factors. The first factor that determines accuracy is the conditional probabil-
ity. This is the probability that a truth judgment is made given that a message is
truthful, or the probability that a lie judgment is rendered give that the message is a
lie. The second factor is what we have called the truth-lie base rate. This is the
probability that a given message is a truth or a lie. Each is discussed in turn.

The Conditional Probability

Conditional probability and accuracy are easily confused. Recall that we defined
accuracy as the intersections of sets. For example, truth accuracy was defined as (T N
H) which represents all truthful messages that are judged as truthful. However,
researchers usually use the conditional probability to estimate truth and lie accuracy
when calculating separate truth and lie accuracy scores. That is, truth accuracy is
calculated by dividing the number of correct truth judgments by the total number of
truth judgments. In such calculations, P(T) is set at 1.00 because the calculation only
considers messages that are truthful (i.e., the sample space is limited to truthful
messages). Recall that P(A | B) = P(A N B) if and only if P(B) = 1.00. Thus, truth
accuracy as most often calculated is an intersection of sets, but it is strictly limited to
the condition where all messages are true.

Estimates of the conditional probabilities obtained in previous research are
remarkably stable. In Levine et al.’s (1999) studies, the conditional probabilities for
truths ranged from .686 to .879 (M = .779) and the conditional probabilities for lies
ranged from .225 to .525 (M = .349). Examination of the literature shows that
estimates almost always fall with these ranges. Experiments using unsanctioned lies
(e.g., Stiff & Miller, 1986), face-to-face interaction (e.g., Buller et al., 1991b), and
studies that do not prime receivers to expect deception (e.g., McCornack & Levine,
1990) each provide estimates within the ranges reported above.

Research suggests that the strongest single determinant of the conditional probabili-
ties is truth-bias, which we denoted P(H) or 1 — P(~H). Truth-bias or P(H) might be
thought of as an “unconditional probability” in that it is typically defined conceptu-
ally (e.g., Anderson et al., 1997) and operationally (e.g., McCornack & Parks, 1986;
Levine et al., 1999) as the number of truth judgments regardless of actual message
veracity. Levine et al. (1999) found that the uncorrected correlations between
truth-bias and the conditional probability for truth ranged from .50 to .66, while for
lies the correlations ranged from —.75 to —.82.

Variables that affect the conditional probabilities and hence accuracy may affect
the conditional probabilities directly or indirectly through truth-bias. That is, any
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Table 1
PREDICTING ACCURACY FOR DIFFERENT BASE-RATES
Type of
P(T) Accuracy Calculation Accuracy Estimate
P(T) = .10 Truth Accuracy 779 X .10 = 0779
Lie Accuracy 349 X 90 = 3141
Total Accuracy 0779 + 3141 = .3920
P(T) = 25 Truth Accuracy 779 X .25 = .1948
Lie Accuracy 349 X .75 = 2618
Total Accuracy 1948 + 2618 = 4567
P(T) = .50 Truth Accuracy 779 X 50 = .3895
Lie Accuracy 349 X 50 = 1745
Total Accuracy 3895 + 1745 = .5640
P(T) = .75 Truth Accuracy 779X .75 = 5843
Lie Accuracy 349 X 25 = .0872
Total Accuracy 5843 + .0872 = 6715
P(T) = .90 Truth Accuracy 779 X .90 = 7011
Lie Accuracy 349 X .10 = 0349
Total Accuracy 7011 + .0349 = 7360

variable that affects P(H) should also indirectly affect P(H | T) while other variables
may impact P(H | T) directly. Further efforts to model the conditional probabilities
will need to specify such effects.

The Base-Rate

The second factor that determines accuracy in our equations is the truth-lie base
rates which were symbolized as P(T) or P(~T). The base rates refer to the probabili-
ties that a message is a truth or a lie. In almost all accuracy studies there is a 50-50
chance that a message is a lie. Thus, P(T) = P(~T) = 0.50. However, when truth
accuracy is calculated, P(T) = 1.00, and P(~T) = 1.00 when lie accuracy is
calculated.

The base-rate component in detection accuracy has generally been ignored in
previous research (Levine et al., 1999). Yet as our formula show, base-rates are a
crucial factor in determining accuracy, and the point estimates obtained in studies
using a single common base rate will not generalize to other base-rates. The example
below shows how the use of the common .50 base rate led to the often cited
across-study accuracy rate of .57.

In the typical study, P(T) and P(~T) are set at .50. Recall that the average
conditional probabilities from Levine et al. (1999) were P(H | T) = .779 and P(~H |
~T) = .349 and that these were typical of estimates reported in the literature.
Applying our formulas, the probability that a truthful message is judged as honest is
779 X .50 = .3895, and the probability of a lie being judged a lie is .349 X .50 =
.1745. Total accuracy using these estimates is then the sum of truth accuracy and lie
accuracy, or .3895 + .1745 = .564, a result almost identical to the across study
average of .57. Alternatively, because P(T) and P(~T) = .50, we can calculate total
accuracy by averaging truth accuracy and lie accuracy, i.e. (779 + .349) + 2 = .564.

Obviously, different results would be obtained for different base rates. In Table 1,
truth, lie, and total accuracy are calculated for five different base-rates (.10, .25, .50,
.75, and .90) using the conditional probabilities employed above. Estimates of total
accuracy range from 39.2% when 90% of the messages are lies to 73.6% when 90% of
the messages are honest. Even more dramatic effects can be seen on the estimates of
truth and lie accuracy. The probabilities of correctly judging a lie range from .035 to
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FIGURE 1
THE PREDICTED LINEAR EFFECTS OF BASE-RATE ON TOTAL ACCURACY.

.314 while the probabilities for truths range from .078 to .701 depending on the base
rate.

In figure 1, base rate is plotted onto predicted total accuracy. Consistent with
Levine et al.’s (1999) findings, the relationship between total accuracy and base rate
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is positive and linear. The slope and the y-intercept of the line will vary from study to
study depending on conditional probabilities for truths and lies, but our formulas
predict that the relationship will remain linear. Because receivers are almost always
truth-biased, the conditional probability for truth is greater than the conditional
probability for lies, and the relationship between based-rate and accuracy is positive.

As repeatedly noted, previous studies have artificially set the base rate at .50. One
might question how applicable this rate is to nonresearch settings. Research on the
prevalence of lies in everyday life is sparse and the results vary. For example,
Turner, Edgely and Olmstead (1975) reported that some form of information control
was evident in the majority of conversational statements. While not all instances of
information control qualify as deception, Turner et al.’s results are often interpreted
as evidence that deception is common in everyday conversation. Perhaps then the
base-rates employed in detection experiments are not that different normal conver-
sation.

Very different conclusions, however, can be drawn from DePaulo, Kashy, Kirken-
don, & Epstein’s (1996) diary studies of lies. DePaulo et al. found that people
reporting telling, on average, only one to two lies per day. Given the number of
statements people make during the course of a typical day, these results suggest that
only a very small proportion statements in everyday conversations are lies. If few
conversational statements are lies, our formulas show that the probability of detect-
ing an infrequent lie is low. For example, if only one out of one hundred statements
are lies and if the conditional probability of detecting a lie is .35, then the probability
of detecting a lie would be p = .0035.

There is of course no definitive answer to the question of the actual base-rate in the
typical everyday conversation. The likelihood of deceit surely varies dramatically
across people and situations. Whatever the base-rate, however, the results of studies
using a single base rate should not be generalized beyond that base rate. Our
formulas, however, are useful in predicting what accuracy would be at different base
rates.

Discussion
Limitations

A number of limitations in our model exist, and these stem from the our relatively
modest goals. First, we attempted to model a specific sort of detection accuracy
experiment where accuracy is calculated and interpreted in terms of a percent of
agreement. Viewing accuracy as an intersection of sets, and viewing lies as the
compliment of truths requires a dichotomous view of deception, and hence our
model was not intended to apply to studies of accuracy using continuous measures.
Similarly, because we modeled accuracy as hit-rate, our model is not intended to
control for chance agreement attributable to perceiver bias (cf. Wagner, 1993).
Modifications or extensions to our model would be required before our formulas
could be applied to continuous view of deception or models of chance agreement.

Another limitation in our probability model is that conditional probabilities are
treated as givens in our formulas. Conditional probabilities will vary to some extent
from study to study depending on the extent of truth-bias, deceiver’s ability, and
detector’s ability. These variations are not modeled directly in the current formula.
Thus, the accuracy rates predicted by our formulas will only be as accurate as the
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estimates of conditional probabilities used to make the estimates. More research is
needed in order to model conditional probabilities.

Conclusion

This essay extends Levine et al.’s (1999) work on the veracity effect by specifying a
probability model of accuracy in deception detection. Accuracy was conceptualized
as an intersection of sets, and shown to be a function of the relevant conditional
probability and base-rate. This model contributes to our understanding of deception
detection in a number of ways. The formulas presented here predict the 57%
across-study accuracy rate evident in the literature based on truth and lie-accuracy
and the .50 base-rate used in previous studies. The model makes explicit the
meaning of truth and lie accuracy in relation to total accuracy. Our formulas show
why base-rate is an essential component is estimates of accuracy, and they predict
the linear relationship between base-rate and accuracy observed in previous re-
search. Finally, our model show how overall accuracy is a function of truth accuracy,
lie accuracy, and base-rate, and allow researchers to predict overall difference in
overall accuracy based on the values of these three critical components.

Notes

"These conclusions depend on what is meant by chance and accuracy. The conclusion that truth accuracy is
above chance and lie accuracy is below chance are based on comparisons of hit rate to an objective base-rate.
So, as long as people are truth-biased, they are more likely to guess correctly when the statement being judged
is a truth as opposed to a lie. As Wagner (1993) points out, however, different views of accuracy and chance
might yield different conclusions. For example, the greater levels of raw accuracy (hit rate) for truths than lies
may be explainable entirely in terms of chance because judges simply guess true more often (i.e., they are
truth-biased). In this sense, truth accuracy may not be greater than chance. This paper focuses on modeling raw
accuracy or hit rate because that is what is reported in the deception literature. If our question was whether
people are more accurate in detecting truths and less accurate at detecting lies simply because they are truth
biased, then we would use an approach like that of Wagner (1993) which corrects accuracy rates for judges’
bias.
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